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The effect of random perturbations on near-resonant motions in non-linear oscillatory systems is investigated. It is assumed that 
the equations of motion of the system can be reduced to standard form with a small parameter e, and that an isolated primary 
resonance exists in the unperturbed system [1]. The behaviour of the perturbed system in the e-neighbourhood of the resonance 
surface is considered and an effect analogous to deterministic "capture in resonance" [1] in an asymptotically long time interval 
is investigated. © 1998 Elsevier Science Ltd. All rights reserved. 

Some special cases of resonances in diffusion systems in a plane were investigated previously in [2, 3]. 
The convergence of the perturbed motion to deterministic motion was proved and small deviations of 
the perturbed trajectories from a stationary point were investigated. 

Below we show that random perturbations, that are small in the non-resonance domain, have a 
considerable effect on the behaviour of the trajectories close to resonance. Hence, in the near-resonance 
domain it is best to consider the trajectory as a whole as a random process rather than small random 
deviations from the unperturbed trajectory. A similar approach was developed for diffusion systems in 
[4] on the assumption that the width of the resonance domain is proportional to e, rather than ~/e. In 
this domain the capture in resonance effect cannot be observed. 

In Section 1 we con,;ider the basic model of a two-frequency system with random perturbations of 
an arbitrary kind. A successive averaging procedure is constructed which enables the slow variable to 
be separated. It is proved that in the near-resonance domain the equations of the perturbed motion 
can be reduced to the equation of an equivalent pendulum with a random torque. The zones of librations 
and rotations corresponding to passage through resonance and motion without intersecting the resonance 
surface are outlined, and a stochastic analogue of the "capture in resonance" effect is formulated. In 
Section 2 we formulate the necessary condition for "capture in resonance". In Section 3 we derive similar 
results for a multifrequency system. In Section 4 the theoretical results are used to analyse near-resonant 
motions in a system with one degree of freedom. 

1. S E Q U E N T I A L  A V E R A G I N G  

We will investigate a system of the form 

.t = el(x, 01 , 02 ) + e F ( x ,  0 i , 0 2 )~(t) 

Oi = ° ~ i ( x ) + e g i ( x ,  O l ,02 )+e .Gi (x ,  Ol ,02)~( t ) ,  i = 1,2 

(1.1) 

as e ~ 0. Herex and 0i are scalars and g(t) is a stationary (zero-mean) random process, satisfying certain 
mixing conditions [5], which are valid, in particular, for Gaussian processes. We will assume that the 
terms on the right-hand side of (1.1) can be represented as trigonometric polynomials, 2n-periodic in 
0i, with a finite number of harmonics and fairly smooth coefficients, and frequencies t~(x) I> ~i > 0 
over the domain considered. Non-resonant motions of (1.1) were investigated in [5]. 

We will compare (1.1) with the unperturbed system 

---~ Ef(X, Ol ,02) ,  0 i = O)i(X)'} 'Egi(X,Ol,02),  i =  1,2 (1.2) 

and assume that in the approximation with respect to e considered, system (1.2) has a single resonance 
surface 
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y(X) = ~ IOl (X)+L2O2(X ) = 0  (1.3) 

where ~ and ~ are certain integers, not simultaneously equal to zero. This means [6] that the time 
average 

• 1 T 
( f )  = hm -~jf(x,coi(x)t+(Pi)dt , i= 1,2 

T---)~. T 0 
(1.4) 

considered as a function of o~.(x), has a discontinuity on surface (1.3). 
As in deterministic systems, we will investigate the behaviour of solutions within the e-neighbour- 

hood of resonance surface (1.3). Suppose the initial point x(0, e) = ~ lies in this neighbourhood, i.e. 

v(r )=~p,  I x = ~  (1.5) 

Following [6], we will introduce the new variables 

7 ( X ) = ~ , I O J I ( X ) + ~ , 2 ( D 2 ( X ) .  (1)----~,101 +~,202, 01 ----~1/ 

i.e. x = X0 '  ). Seeking a solution which lies in the ~/e-neighbourhood of (1.3), we put 

"t(x) = ~tP, Ix = 4-~ 

(1.6) 

(1.7) 

Then (1.1) becomes 

P = ~ ( IxP ,  ~', v )  + ~LO(~P, ~ ,  V)~(t)  

= gP + g2k(IxP, ~,  V) + Ix2 K(IX P, ~ ,  V)~( t ) (1.8) 

= ~(laP) + ~2o (IXP, ~, v)  + Ix2 v(ix P, ~, v)~(t) 

and the coefficients (1.8) are obtained by substituting (1.6) and (1.7) into (1.1). Here  ~ = (101(S(~lg))  
= D~ + ~ I P  + . . . .  where ~ = cox(X(0)) = const. Consequently, (1.8) can be regarded as a system 
in standard form, and we can apply to it the stochastic averaging method, taking higher approximations 
into account [7]. In accordance with [7], we must retain terms up to the second order in the deterministic 
coefficients, and terms of first-order infinitesimals in Ix in the random coefficients. We will rewrite (1.8), 
taking into account only those terms that are important for the subsequent analysis 

]5 = Ixbo (ci~, ~/) + Ix2bl ( ~ ,  ~ / )p  + ~tDo (cl~ ' ~l/)~(t) 

=l ' l~+l ' l '2ko(~,~l/)  , ~/=~'~0 +IX'~IP+~I'21/o((I~,¥) (1.9) 

where b0(O, V) = b(O, ~,  V), bx(*, V) = db/d(I.tP)le = 0, etc. 
To analyse (1.9), we will construct an asymptotic procedure for separating motions which generalizes 

the successive averaging method developed for deterministic systems [8], and we will separate the 
equations for the slow variable which do not depend on • and ~. 

Averaging over the fast variable. Following [7], we will average (1.9) over ~. We obtain that as g ~ 0, 
the process P(t, g) converges weakly [9] to the solution p(t, Ix) of the averaged stochastic system 

/b = Ix~0(tp)+Ix2~l(tp)p+~t~o(~)w(t), tp = ~.tp+IxExo(~) (1.10) 

with the same initial conditions as in (1.9). Here w(t) is a standard Wiener process, where the drift and 
diffusion coefficients are given by the formulae [7] 

1 2n 1 2~ 
~ i ( c p ) = - -  S bi(tP, v )d~ ,  i=0,1,  ~ 0 ( ~ p ) = - -  Jko(tp, v ) d  v (1.11) 

2n 0 2~ 0 

1 2~  .o 

(~2 ((p) = ~ I d~ j D O (tp, V)Do ((p, V + g2ot)K~ (t)dt 
0 -*~ 
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and K~(t) is the correllition function of the process ~(t). The structure of the coefficients (1.9) are such 
that when averaging is carried out up to the second order, additional terms in the drift coefficient do 
not appear. It was proved in [7] that the convergence P ---) p is ensured in the time interval where the 
processp(t, Ix) is weakly compact [9, 10]. Below we will show that weak compactness is ensured in the 
time interval t -- 1/I.I, 2. 

Averaging over the semi-slow variable. In (1.10) we will separate the truncated subsystem 

P0 = IX[5o(tPo), ¢o = IXP0 (1.12) 

with the same initial conditions. 
If the coefficients of the initial system (1.1) can be represented in the form of trigonometric 

polynomials, the coefficient ~0(9) can be regarded as a 2rt-periodie zero-mean function [1, 11]. Here 
the unperturbed system (1.12) has a first integral, defined by the relation (p = P0, tp = %) 

H = p2 / 2 + U(tp), d U I  dip = -[30(q~ ) (1.13) 

A typical 2~-periodJic potential U(tp), characterizing the motion near resonance, is shown in Fig. 1, 
and the phase trajectories corresponding to it are shown in Fig. 2 [11]. In the phase plane we distinguish 
domains of oscillatory motion (O) and rotational motion (R), separated by the separatrice S. In other 
words, the motion of the perturbed system can be regarded as the oscillatory and rotational motions 
of an equivalent pendulum with a restoring moment -130(tp) and a perturbing torque. Only bounded 
motions in the domain of the oscillatory motions correspond to "capture in resonance". In terms of 
the change in total energyH, motions within the potential well W: min U(tp) < H < max U(tp) correspond 
to the "trapped" motions. 

We will investigate the effect of random perturbations on these motions. 
Following [12], we will introduce the new variables H and ~, where H satisfies (1.13), while the phase ¢ is given by the relations 

~__~= 2~ 1 , T ( H ) =  ~ 1 
Otp T(h)  p(h, tp) r(h) p(h,~p) dtp (1.14) 

Here T(H) is the period and 2n/T(H) = co(H) is the natural frequency of the oscillations. In the domain 
0 the integration is carried out over the closed contour F(H), bounded by the turning points 9(H), and 
i~(H) are the roots of the equation H = U(tp). 

By considering H as a new slow variable, we obtain 

p(H,  (p) = _{2[H - U(tp)]} Y2 (1.15) 

Using Ito's formula :for the change of variables in stochastic systems [9], we obtain 

Oh. Oh 1 2 2 02h 

+ = ¢ + H + ½ Ix2°o  o ) 0h 2°2¢ (1.16) 

U ~  P R 
W 

Fig. 1. Fig. 2. 
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It follows from (1.11) and (1.16) that 

H = g2d(H, 9(H, t~)) + g~i(H, (p(H, dp))w(t) (1.17) 

= lato(H) + Ix2~Sd(H, tp(H, t[0) + IxA(H, tp(H, tb))fv(t ) 

where 

d=(H, (P )=~ io ( tp )p2 (H ,~ ) - f~ l (q ) )Xo (~ )+ l ( sg ( t p ) ,  ~)(H,(p)=t~o(tp)p(H,~) (1.18) 

The coefficients ~P and A can be calculated by (1.16). It is obvious that 0# can be regarded as a fast 
phase with respect to the slow variable H and, by (14), the right-hand sides of (1.17) are 2re-periodic 
in t~. The averaging principle [13] holds for systems of type (1.17): as Ix ~ 0 the process h(t, Ix) e W 
converges weakly to the slow diffusion process h(x), which satisfies the equation 

h'(T,) = d o (h) + 50 (h)w'('r,), '~ = Ix2t (1.19) 

where the prime denotes differentiation with respect to the slow variable x, and the drift and diffusion 
coefficients are calculated by averaging over the fast phase ~p. Taking relation (1.14) between the phases 
q~ and t~ into account, we obtain 

~0) dip, 8~(h) = dip (1.20) 1 I d(h, _ ~ 1  [ 82(h, ~__) 
d°(h)  = r ( h )  r(a)P--~, ~0) V(h)  r~n) p(h, tp) 

where the integration is carried out over the contour along the corresponding phase trajectory (compare 
(1.14)). A similar averaging scheme is described in [3, 13]. 

Convergence is ensured in the time interval x e [0, 7] =/7- such that h(x)  E W, x ~ IT [13]. 

2. THE NECESSARY CONDITION FOR TRAPPING 

We will formulate conditions similar to the "capture in resonance" conditions (in the probability sense). 
It is obvious that an effect similar to "capture" occurs if any trajectory, beginning in the region R, falls 
in the domain O with unit probability in a finite time and, beginning at a certain finite instant of time, 
does not leave this domain (Fig. 2). This implies [9] that the process P(t, Ix) is positively recurrent with 
respect to the domain O and non-recurrent with respect to the domain R uniformly for sufficiently small 
Ix. Recurrence problems for perturbed diffusion Hamiltonian systems were discussed previously in 
[2, 3], but the conditions obtained can only be checked easily for quasi-linear systems with one degree 
of freedom and time-independent diffusion coefficients. In this problem it is convenient to consider 
other conditions which, when satisfied, enable the system to leave the domain O. 

If we consider the energy h(x) as a measure of the deviation from the resonance surface, the condition 
for emergence reduces to the obvious inequality 

do(h) > O, h ~ W, h(O) E W (2.1) 

It follows from (1.18) and (1.20) that (2.1) is weaker than its deterministic counterpart. This implies 
that random perturbations can cause the system to leave resonance even when the deterministic system 
has a stable resonance mode. An example is discussed in Section 4. 

3. M U L T I F R E Q U E N C Y  SYSTEMS 

We will consider some details of the analysis of near-resonant motions in multifrequency systems. 
We will investigate a system of the form 

Y¢ = e f (x ,O)+eF(x ,O)~( t ) ,  x ~ R, (3.1) 

= co(x)+eg(x ,O)+eG(x ,O)~( t ) ,  0 ~ R m 



Near-resonant motions in systems with random perturbations 47 

Here ~(t) is a vector random process which satisfies the conditions of Section 1,f ,g and ~ are vectors, 
and F and G are matrices of appropriate dimensionalities. The right-hand sides of (3.1) are assumed 
to be fairly smooth with respect to their variables and 2n-periodic with respect to each of the components 
of the vector 0. The non-resonant case was considered in [5]. 

We will assume that, in the  unperturbed system, there is at least one resonance surface 

7(x) = (Z,, o(x)) = 0 (3.2) 

where ~, is an integral vector, ] ~ . [ ,  0. If it is possible for several resonances to occur in the approximation 
considered, we will assume that, for sufficiently small e, there is no overlap of  the resonances, and the 
motion in the "4e-neighbourhood of each of the surfaces can be investigated independently [11]. 

As in Section 1, we will introduce new variables, characterizing the motion in the Ix-neighbourhood 
of  (3.2), Ix = 4e 

BP=(~.,to(x)), ~=(~, ,0) ,  Y~=xl, ¥ , .=0 i ,  i=1  ..... n - 1  (3.3) 

Converting (3.1) using (3.3) and retaining only terms that are important for the further analysis, we 
obtain a system, similar to (1.9), but with the additional slow variable Y 

P = IXbo(Y, dP,~)+ix2bl(Y, dP,¥)P+lxDo(Y, dp,¥)~(t) (3.4) 

~ = l.IJ~ + ~t2ko (Y, ~, ¥), }Y = Ix2ro ( r , ~ ,  t]/) 

= ~ o  + g f / t P +  B ~ o ( Y , ~ , ¥ )  

Averaging system (3.4) over the fast phase y w e  obtain that as Ix ---> 0 its solution can be approximated 
(in the weak sense) by the solution of the following system [5] 

ib = Ixl~0 (Y, to) + B2[it (Y, to)P + Ixa0 (Y, tp)~b(t) (3.5) 

~=Pp+Ix2x°(to), y:Ix2po(y, to) 

We will compare (35)  with the unperturbed system 

Po = BI3o(Y, too), ~0o =laPo 

We will assume that []0(Y, to) is a 2n-periodic function of to for each fixedy from the region y e Dy of 
the change of  variable considered. Then, for eachy e Dy the potential U(y, to) and the phase trajectories 
corresponding to it have the form shown in Figs 1 and 2. 

We will define the new slow variable H by a relation similar to (1.13), with U = U(y, to). By the same 
transformations as in Section 1, we obtain that the variable H(t, Ix), found from the solutions (3.5), 
converges weakly to the slow process h(x), which satisfies the system of equations 

h'(x) = do(h,y)+8o(h,y)w'(x), t'(x)= v0(h,y ) (3.6) 

Here, as in Section 2, % = B2t, the prime denotes differentiation with respect to x, the coefficients do 
and 8o are defined in the same way as (1.20), and v0(h,y) is obtained by averaging the coefficient p0(h, 
t0,y) over the phase to for fixedy. Convergence is ensured in the time interval t e [0, T/IX2], and in the 
same interval the conclusions of Section 2 regarding the possibility of "capture in resonance" hold. 

4. E X A M P L E  

Consider the resonance mode in the system 

~+2z[~2 +(~4 +4z2)p~ ]-1 +E~o ~ = e(sintot +~(t)) (4.1) 

Here ~(t) is stationary white noise with spectral density So. Following the same approach that was used when 
considering the deterministic analogue of (4.1) [6], we introduce new variables x, 01, 02 by the formulae 



48 A . S .  Kovaleva  

z=xs in02 ,  ~=xA~cos02, h i= to  

which convert (4.1) to the standard form (1.1) and then, following (1.6) and (1.7), the variables 

02-01=¢~,  7 = x - Y 2 - t o = l f f ' ,  Ix=e/~ 

whence we have 

x-~2=to+ktP, x ~  = to-I (1 - i.tto-Ip) + ~2... 

As a result, the initial system is reduced to the form (1.9). On the right-hand side of the first of  Eqs (1.9) there 
is an additional term ~tZl, which appears due to the dissipative forces of the order of  can in (4.1). The coefficients 
(1.9) can be written in the form 

bo = to - IR(~+ ¥ )cos (~  + ¥)sin ¥,  ko=to-lR(~+w)sin(dP+w)sinw 

b I =- to- lb  O, l=-axo-2R(ep+~)cos2(~+¥) ,  D O = t o - l R ( ~ + ¥ ) c o s ( ~ + ¥ )  

where R(¥)  = 2(1 + sin2~) -1. It is obvious that the averaging procedure on the fast phase ¥ remains valid, but on 
the right-hand side of the first of Eqs (1.10) there is an additional term ~ ,  corresponding to the averaging of 1 
over ¥. The approximating system (1.10) takes the form 

p = I.l.l~0(~)+l.t2[~l (q~)p+ ~.0 ]+ gO'ofi~(t), tp = p.p+l.t2;~ 0({p) (4.2) 

where 

[io(tp)=-2to-lrcsin~p, 13t=to-t[30, Xo=2to-trsc0stp 

~'0 = -2ato-2rc , 02 = 4Soto-2P 2 

and (compare [6]) rc = 4(2) - 1, rs = 1 - 1N2, p2 = 1N2. 
We introduce the new variable H by formula (1.13). The potential U(tp) = -2rcto -1 has the form shown in 

Fig. 1. Oscillatory modes are defined by the condition [HI < 2rcto -1, turning points have the form t~ = - 9  = 
- arccos(Hto/(2r0) ) and the functionp(H, 9) is defined by (1.15). 
Repeating all the transformations in Section 1, we obtain that the approximating diffusion process h(x) satisfies 

the equation 

h" = d o +ooV(h)w'(x) (4.3) 

where 

d o = 2to-2 (2S0p 2 -arc )  (4.4) 

V 2 ( h ) : ~ l  S p(h,tp)dtp, T(h)= S 1 
T(h) r(h) r(h) p(h,cp)dtp 

(4.5) 

and the integration is carried out over contours in the corresponding regions of variation of the variables. Taking 
(4.3) into account we obtain 

V 2 (h) = 2~.2E(~ / 2,k)F -I (~ / 2,k) (4.6) 

~2 = h + 2rcto-l, k 2 =4rcto-l$2 

where F and E are elliptic integrals of the first and second kind respectively. 
By (2.1) and (4.4) the trapping condition do < 0 takes the form 

2S0P 2 < ctr c (4.7) 

Moreover, inside the region 0 the coefficient V(h) ¢ O, i.e. the "trapped" trajectory cannot remain in the 
equilibrium positionp = 0, tp = 0. This means that fluctuations in the frequency of the oscillations laP -- x -lrz - to 
do not vanish and can be calculated from Eq. (4.3). 

Hence, random perturbations contract the trapping region of trajectories, and strict synchronization in the 
perturbed system becomes impossible. 
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